
P. Schmieder, B. Plimmer and R. Blagojevic / Automatic Evaluation of Sketch Recognizers

©The Eurographics Association 2009.

EUROGRAPHICS Symposium on Sketch-Based Interfaces andModeling (2009)
C. Grimm and J. J. LaViola Jr. (Editors)

Automatic Evaluation of Sketch Recognizers

Paul Schmieder, Beryl Plimmer, Rachel Blagojevic

Department of Computer Science, University of Auckland
Private Bag 92019, Auckland, New Zealand

ABSTRACT
We present our toolkit to automatically evaluate recognition algorithms. There are few published comparative
evaluations of sketch recognition algorithms and those that exist do not provide benchmarking or direct
comparisons because standardised data and an evaluation platform is not available. By unifying data collection,
labelling and evaluation in one tool, fair, flexible and comprehensive evaluations are possible. Currently we have 6
existing recognizers integrated into this tool. With our initial evaluations of these recognizers we have observed
that the context from which training data is taken has an effect on recognition success rates. These results suggest
that an evaluation platform such as this is a powerful adjunct for sketch recognition research.
Categories and Subject Descriptors (according to ACM CCS): I.7.5 [Document Capture]: Graphics recognition and
interpretation

1. Introduction

Fair and comparative evaluations of sketch recognizers
have been difficult and circumstantial because of the lack
of a general evaluation framework. There are tools to
collect and label data [WSA07, PWJH08] and others to
interface to multiple recognizers [SNK07]. However, to our
knowledge, no tool provides an interface to plug in
recognition algorithms and generate performance
information using labelled data.

A number of recognition techniques for hand-drawn
sketches have been proposed. The efficacy is difficult to
judge because there is no comparative benchmarking
between techniques and algorithms. In part this is because
the recognizers have been developed for different
problems. Nevertheless, it is difficult to compare
recognizers without consistently labelled training (for those
that require training) and test data and an automatic test
platform.

We extend our sketch framework DataManager
[BPGW08, BSP09], with a flexible evaluation platform
into which recognition algorithms can be plugged-in and
automatically tested. By adding a module to evaluate
recognition algorithms, we create a toolkit which brings
sketched data collections and recognition algorithms
together. The extensions are primarily the development of
an evaluation interface to accommodate and test
recognition algorithms. We have also integrated a multi-
stroke labelling mechanism to accommodate a wider range
of recognizers.

2. Overview

A framework uniting data collection, labelling, an
interface to recognizers and a method to capture
recognition results can form the foundation for comparative
evaluations of recognizers. It enables an efficient

evaluation of algorithms and the determination of the best
available algorithm for new sketch domains. To evaluate
new algorithms, the platform can be employed by simply
integrating the new algorithm and testing it on data other
recognizers have been tested on. Additionally, by providing
the means to collect new data and label it, new domains can
be tested on the implemented algorithms to determine the
most appropriate one. Furthermore, previously unknown
effects, such as the effect of different training datasets
reported later in this paper, can be observed.

To automate the evaluation of recognition algorithms a
flexible framework is needed. An impartial evaluation is
difficult when the participating elements differ in their
scope of operation as well as in the underlying input and
output constraints. A flexible platform which maximizes
the manipulation of evaluation parameters does not
completely solve the problem of impartial evaluations but
gets closer to the solution. Up to now, when recognizers
have been compared, one of two approaches has been
taken: either accept the inconsistencies as a source of error
or adjust the algorithms to accept similar input and produce
similar output.

Moreover, the framework acts as a repository for a
feature library, recognition algorithms and ink datasets.
Currently, in many publications promoting a new
algorithm, the evaluation is constrained to tests involving
data which is only used for the immediate assessment. This
leads to a limitation of its significance. The acquisition of
labelled data and of existing algorithms to lessen these
limitations is problematic. Collecting and labelling data is
time consuming. In the majority of cases the published
description of an algorithm is not detailed enough to
guarantee an exact copy; this renders any comparison
meaningless. In this project some existing recognizers have
been created from the published descriptions, others have
been obtained by personal request to the authors.

P. Schmieder, B. Plimmer and R. Blagojevic / Automatic Evaluation of Sketch Recognizers

©The Eurographics Association 2009.

Figure 1: The evaluation platform’s architecture

In the next section we present details of the evaluation
platform implementation. We then report on two
experiments we have used to evaluate the platform: for the
first we integrated 6 basic shape recognizers and tested
their performance over a limited set of basic shapes. The
results suggested that the context of the drawings was
affecting performance. The second experiment further
explored this phenomenon. Finally we place this project in
context with a review of related work and further
discussion.

3. Implementation

The new evaluation platform is implemented into
DataManager [BPGW08]. A number of extensions were
needed to realize this platform; recognizer integration,
training, testing, results generation and flexible labelling.
The architecture of the new evaluation platform is shown in
Figure 1.

The communication between the evaluation platform and
the recognizers is handled by manager classes, each
dedicated to one recognizer. The evaluation platform uses
reflection to interact with the manager class that
implements the necessary training and test methods to run
the recognizer.
3.1 Recognizer Integration

As there is no standard programming language defined
for recognition algorithms, DataManager (written in C#)
has to be able to work with all possible languages; e.g.
Microsoft C#, Java and C++.

To exchange information between the manager classes
and the recognizers, data serialization is used. Data sent
from the manager classes includes the component’s strokes
broken down into the point coordinates plus time stamps
and the test settings. The serialization technique is also
used for the manager classes to receive the recognition
results from the recognizers.

To present data to different recognizer in appropriate
formats it is then de-serialized and converted into
appropriately formatted stroke objects. To run the
recognition and serialize the results a script in the
recognizer’s programming language (Note: Only for non
C# recognizers) has to be written by the user. This script
can be called by the manager class once the necessary
information has been serialized. To aid serialisation and de-
serialisation in Java and C++ methods are provided as
separate classes in the DataManager package.

Every recognizer must have a unique name so that it can
be instantiated. The recognizer’s name is stored in a
settings file which is maintained by the user. Once a class
is instantiated the methods to train and test the recognizer
can be invoked.
3.2 Training

The effect of training a recognizer is to induce
knowledge about the components it has to recognize. This
is done by providing it with examples of the actual
components. Depending on the algorithm’s architecture, a
recognizer may need to be trained. Ink data has to be
provided to the recognition algorithm for this purpose.
There are different learning techniques ranging from the
creation of component snapshots [WWL07] to the
generation of specially formatted files containing the
serialized ink data [PF07]. As there are many different
ways to train a recognizer the training method in the
recognizer’s manager class must be individually coded.

To select the data which is used to train the recognizer,
DataManager iterates through all the sketches which have
been selected for training. For each sketch, the components
are checked individually as to whether they satisfy the
evaluation options; e.g. single and/or multi-stroke
components. The user specifies which participants to draw
the training data from and the maximum number of training
examples. In the case where there are more examples per
component class available than allowed, a subset of the
shapes has to be chosen by DataManager. Two different

P. Schmieder, B. Plimmer and R. Blagojevic / Automatic Evaluation of Sketch Recognizers

©The Eurographics Association 2009.

Figure 2: The general interface of DataManager’s evaluation platform

methods have been implemented; random and sequential.
Random selection can be useful when the influence of the
selection of components within a sketch has to be
examined or if the selection does not matter at all.
However, the random method excludes the chance of
repeating the exact same evaluation at a later point in time
because there is no way to reselect exactly the same set of
randomly chosen training examples. Sequential selection
overcomes this problem by taking an equal number of
shapes from every selected participant. With this approach
diversity over the possible different drawing styles from
different participants is guaranteed.

Components that pass the filter which eliminates
prohibited components (components which have been
excluded by the evaluation settings), trigger the
recognizer’s training method and are handed over to the
recognizer together with training settings. The criteria a
component has to satisfy for training are generally identical
with those for testing. However if different criteria are
required or training data in the corresponding format
already exists, the location of this data can be specified in
the settings file.
3.3 Testing

To test a recognizer, ink data and the test settings are
input to the manager class’s test method. The main task of
the test method is to initialize and configure (according to
the test settings) the recognizer, trigger the recognition and
receive and store the results. Additionally, depending on
the recognizer’s implementation language, the manager
may need to invoke the script which controls the recognizer
in its language (see 3.1 Recognizer Integration).

The decision whether to pass the recognizer a complete
sketch or the sketch’s components one after another is
based on the test settings. In contrast to the decision
whether single and/or multi-stroke components are to be
tested, this choice is mutually exclusive. If a complete

sketch is passed to the recognizer it has to compute
multiple recognition results and pass them back to
DataManager. This is not necessary if one component at a
time is processed.

To select the data which is used to test the recognizer,
DataManager iterates through all the sketches which have
been selected for testing, filtering and formatting the data
using the same methods as are used for training data, and
forwarding it to the recognizer. Once the recognition is
finished, the results that consist of the recognizer’s
suggestions, the correct classification, duration and
confidence values are stored.
3.4 Output

Once all recognizers are tested the results are prepared
for output. Output can be generated in two different
formats; screenshots of the wrongly recognized sketches
and a Microsoft Excel file containing values and statistics
from the evaluation.

A screenshot of a sketch is generated if any component
has been incorrectly classified. To make the screenshot
more readable each stroke is coloured depending on its
recognition result. If a stroke has not been considered
(because of test settings) it is coloured black. A correctly
classified stroke is blue. Incorrectly classified strokes are
coloured red and a number is assigned to every wrongly
recognized component. A legend of these numbers below
the screenshot gives the correct result and the algorithm’s
proposed result (see Figure 1 (A)).

The generated Microsoft Excel file contains information
regarding several different test aspects. The information is
grouped into 4 categories presented on four Excel
worksheets; evaluation settings, general recognizer results,
component results and participant analysis.

The first category, evaluation settings, provides
information about the evaluation study so that the test can

P. Schmieder, B. Plimmer and R. Blagojevic / Automatic Evaluation of Sketch Recognizers

©The Eurographics Association 2009.

be rerun under the same conditions. On the second
worksheet, details about every recognizer’s performance at
different levels of granularity are given. At the most
general level, overall performance information is given for
all recognizers with the number of correctly and incorrectly
classified components (Figure 1 (B)). To provide a more
detailed analysis of the results a confusion matrix shows
every recognizer’s suggested classifications versus the
correct result (see Figure 4 (B)). Statistics presented on the
third and fourth worksheet give more detailed information
on shape and participants respectively.

During the recognition process any program exceptions
which are caused by the integrated recognizers are logged.
The error.log file contains the information identifying the
ink data causing the exception.
3.5 XML Settings File

The names of the integrated recognizers are provided to
DataManager by including them in the XML settings file
along with other recognizer specific settings. These settings
are separated into two groups; options and mappings. An
option specifies a setting related to either DataManager or
the recognizer; for example whether the recognizer can
accept multi-stroked shapes.

A mapping can be used to manipulate the recognition
result statistics. With a mapping the name of the
recognition result can be associated with the name of a test
component. For example the component shown in Figure 3
may have been labelled in the test data as an “arrowhead”
while Cali [FPJ02] calls it “move”. To reflect this fact in
the generated statistics, the mapping function is used.

Figure 3: A basic shape called “move” by Cali and

“arrow head” by DataManager

3.6 GUI
From the evaluator GUI interface all elements necessary

to set up and control an evaluation study of the recognizers
can be set. Due to space constraints, only the most
frequently used elements are always shown; the recognition
algorithm list (Figure 2(A)), the button to load a setting file
(Figure 2 (D)) and the button to start the recognition
(Figure 2 (E)). The remaining elements are arranged on
tabs. One set of tabs is for recognizer specific options
(Figure 2 (B)) and the other one for test specific options
(Figure 2(C)).

As every recognizer takes different forms of input,
options to control these differences are provided. Via the
options, those recognizers that can handle multi-stroke data
can be tested on just single stroke examples. Also, some
recognizers are restricted to one component per recognition
step; others take complete sketches as input. These options
are recognizer specific rather than test specific. By defining
them as recognizer specific, it is possible to configure

flexible tests such as the performance of recognizers
restricted to single stroked components with those which
can process multi-stroke components.

The lower tab set controls the data provided to the test
for training and testing. Depending on the different aspects
such as the number of training examples, the recognizer’s
performance may vary. The recognizer training options are:
the selection of training data, the maximum number of
training examples per component and the method the
training examples are chosen.

The training data is selected by checking the participants
and their sketches. It is not possible to isolate certain parts
of the sketch; when a sketch is selected all its labelled
components (dependent on the filter) become possible
training examples. However it is possible to set a
maximum number of training examples per component.
This restriction is applied to every class of components but
does not guarantee that enough examples of a component
are available. To provide an overview of the component
numbers included in the selected sketches, a table
containing all the different types of labelled components is
shown. The number of single stroke components is listed
separately from the number of multi-stroke components
(Figure 2 (C)).

The test tab is similar in structure and content to the
training tab. While it is usual to use different data for
training and testing this is not enforced, but a warning
message is generated if the same data is selected.

The next tab guides the filtering of basic components and
is controlled by a check-list generated from the loaded
dataset showing all the different labels which have been
used to tag sketch components in the dataset. Component
types to participate in an evaluation study are selected, the
other classes are deselected. This filter applies for training
as well as for testing.
3.7 Labelling

Besides the recognizer integration and test platform the
DataManager labelling has been extended as some
recognizers evaluate components consisting of more than
one stroke (multi-stroke). The existing single-stroke
labelling system has been supplemented with the new one
which allows the grouping of multiple strokes to one
component. Thus the same stroke can be part of different
components; for example a rectangle could be labelled as
rectangle, quadrilateral and square. Multi-stroke labels can
be added, removed and manipulated at any time.

4. Experiment 1

As a proof of concept of the evaluation framework we
have integrated and evaluated 6 basic shape recognition
algorithms; Cali [FPJ02], Microsoft Ink Analyser, 1$
recognizer [WWL07], Rubine’s [Rub91] with the extended
feature set used in InkKit [PF07], PaleoSketch [PH08] and
a recognizer using dynamic time warping techniques
(DTW) [WWL07].

P. Schmieder, B. Plimmer and R. Blagojevic / Automatic Evaluation of Sketch Recognizers

©The Eurographics Association 2009.

Figure 4: (A) Evaluation summary results for line, rectangle and circle tests using 6 different basic shape recognizers. The

duration is given in milliseconds.(B) Confusion matrix showing Cali’s detailed classification results. (C) An ER diagram from
DDS which’s shapes can be used for trainingand testing. (D)All shape classes contained in both datasets; BSDS and DDS.
This set of recognizers varies in implementation

language (Java, C# and C++), recognition algorithms and
techniques. For the Java recognizer (PaleoSketch) we
interfaced to the jar file. C++ and C# recognizers have been
referenced as libraries (i.e. Cali and the Microsoft Ink
Analyser). The source code of the three remaining
recognizers implemented in C# is directly integrated. Out
of the six integrated recognizers, three have to be trained;
Rubine, DTW and 1$. PaleoSketch has been provided to us
on personal request, Cali has been downloaded from
http://vimmi.inesc-id.pt/cali/code.html and DTW and 1$
from http://depts.washington.edu/aimgroup/proj/dollar/,
for Rubine’s we have used our group’s InkKit
implementation.
4.1 Basic Shapes

All of these recognizers seek to identify basic shapes
found in diagrams. There is no definitive set of basic
shapes. The most common are: line/curve/arc,
rectangle/square/diamond, circle/ellipse, arrow head and
triangle (Figure 4 (C,D)).

The larger the set the more difficult it is to accurately
recognize basic shapes due to the increased number of
possible candidate classes and similarities between classes.
If a set only consists of two different shape classes there is
a 50% chance that the correct result is computed by pure
chance. The likelyhood of misclassifications increase even
more in case of different shape classes that are similar such
as ellipses and circles.

Another difficulty when recognizing basic shapes is a
shape’s composition. A basic shape can be sketched with
an arbitrary number of strokes (multi-stroke) and
furthermore, one stroke can represent an arbitrary number
of shapes (complex shapes). However, complex shapes, as
the name indicates, are not considered basic shapes.
4.2 Dataset

 To conduct the experiment a data set of basic shapes has
been used. The set contains six different drawings from 33
participants with examples of the basic shapes: circle,
rectangle, diamond, arrow, triangle and ellipse. Each

person drew 9 or 10 examples of each shape; no instruction
was given to them on drawing style. We refer to this
dataset as the Basic Shape Data Set (BSDS). For this
experiment only single stroke lines, rectangles and circles
have been used (see Table 1).

Table 1: Overview of the basic shapes used for both
experiments taken from the basic shape dataset (BSDS)

 Single
stroke

Multi
stroke

Total

Circle 304 1 305

Rectangle 156 143 299

Line 324 1 325

Total 784 145 929

4.3 Experiment Settings

For the evaluation all recognizers have been tested on
lines, rectangles and circles. Additionally, the basic shapes
have been input one at a time, not as complete diagram
sketches. Rubine’s [Rub91], 1$ and DTW [WWL07] have
been trained with 15 examples per shape class using two
participants’ sketches. The remainder of the data was used
for testing. To run the experiment, a Dell Optiplex 775
running Windows Vista with an Intel Core Duo CPU with
two 3.00 GHz cores and 4 GB Ram was used. The
evaluation took 17 minutes and involved the test of 285
circles, 140 rectangles and 305 lines taken from table 1
column 2 (with the other data used for training). The results
are generated as a Microsoft Office Excel file and colour
coded images of the misclassified basic shapes.

The raw results can be seen in Figure 4 (A). Rubine’s
achieved the highest recognition rate closely followed by
1$, PaleoSketch, DTW and Cali. The Microsoft Ink
Analyser performed considerably worse.
With these results we can demonstrate the difficulty of
comparing recognizers. It is not always possible to
manipulate a recognizer’s basic shape set which makes a

P. Schmieder, B. Plimmer and R. Blagojevic / Automatic Evaluation of Sketch Recognizers

©The Eurographics Association 2009.

fair comparison a difficult undertaking. Cali’s basic shape
set cannot be manipulated, in 94 cases circles have been
classified as ellipses. In 23 of these 94 misclassifications
the correct result has been returned as the second most
likely result (Figure 4 (B), last column). In contrast,
PaleoSketch has an option to switch off the modules
responsible for a shape class. Figure 4 (A) shows the
results for PaleoSketch when only the circle, rectangle and
line modules are activated. However, in the case when all
14 modules are activated, PaleoSketch recognizes 638
shapes correctly, 44 less than before. Note that these
numbers are not representative for any of the recognizers’
real performances as we just use them to outline the power
of DataManager and the difficulties of a fair evaluation.
Other tests we have run with different combinations of
shape sets have given quite different rankings. The
evaluation also reports on the average classification time
per shape in milliseconds given that the recognizer is
already trained and configured. Large differences between
the recognizers can be seen (Figure 4 (B) row 7).

The analysis from a shape’s perspective shows that
almost one third of all rectangles have been misclassified
while 82% of the circles and lines have been correctly
classified (Table 2).

Table 2: Shape matrix for all recognizers

 Circle Line Rectangle
Correct 1387 1502 561
Incorrect 323 328 279
% Correct 81.11% 82.08% 66.79%

5. Experiment 2

We also tried the same experiment on a diagram dataset
(DDS) of Entity Relationship (ER) diagrams and Process
diagrams drawn by the same participants and collected at
the same time as the BSDS dataset used in experiment 1.
This dataset consists of 33 ER and Process diagrams drawn
by each participant from a text description of the
requirements. We noticed quite different results for the
non-trainable recognizers (Cali, PaleoSketch, Microsoft Ink
Analyser).

We hypothesised that there may be some difference
between participants’ drawing style when drawing
individual component examples to when they draw them as
a part of a diagram.

To investigate our observations, we ran four more
evaluations. For the first two tests trainable recognizers
(Rubine, 1$ and DTW) have been trained on the basic
shapes from participants 1 to 7 from the BSDS and all
recognizers tested on participants’ 8 to 33 data from both
datasets. For the third and fourth test, the trainable
recognizers have been trained again on participants 1 to 7’s
data from the DDS dataset and tested on participants’ 8 to
33 data from both datasets. We modified the basic shape
set from the first experiment replacing circles with ellipses
as we had more examples of ellipses in the DDS.

When comparing the success percentages there are some
clear break points in the difference in results. The
recognition rates are either <2.5% different or greater than
5%. Our data collection process was not ‘balanced’ (we
had not planned to do this experiment) so rather than using
complex statistics we simply considered values less than

2.5 as worthy of further investigation. Tables 3- 5 show the
summary results from this experiment.

Table 3: Results for non trainable recognizers

Cali MS PaleoSketch
Test Diagrams (% Correct)

Rectangle 91.30 65.22 93.48
Line 84.07 0.00 88.50
Ellipse 94.06 81.74 98.17

Test Basic Shapes (% Correct)
Rectangle 90.43 22.61 78.26
Line 97.58 0.00 97.58
Ellipse 95.26 75.86 99.57

Differences
Rectangle 0.87 42.61 15.22
Line -13.51 0.00 -9.09
Ellipse -1.19 5.87 -1.40

Table 4: Results for trainable recognizers tested on
diagram dataset

 Rubine 1$ DTW
Train Diagrams (% Correct)

Rectangle 82.61 91.30 82.61
Line 100.00 100.00 100.00
Ellipse 97.26 98.63 96.80

Train Basic Shapes (% Correct)
Rectangle 67.39 71.74 80.43
Line 100.00 97.94 100.00
Ellipse 99.54 73.52 80.37

Differences
Rectangle 15.22 19.57 2.17
Line 0.00 2.06 0.00
Ellipse -2.28 25.11 16.44

Table 5: Results for trainable recognizers tested on
basic shape dataset

 Rubine 1$ DTW
Train Diagrams (% Correct)

Rectangle 92.17 87.83 76.52
Line 100.00 100.00 100.00
Ellipse 98.28 98.71 98.71

Train Basic Shapes (% Correct)
Rectangle 77.39 65.22 71.30
Line 100 99.19 100.00
Ellipse 99.57 85.78 90.95

Differences
Rectangle 14.78 22.61 5.22
Line 0.00 0.81 0.00
Ellipse -1.29 12.93 7.76

Five of the nine results (differences) for the untrained

recognizers (Table 3) are greater than 5%. For rectangles,
Microsoft and PaleoSketch perform much better on DDS,
while Cali is equally good. For ellipses, Microsoft achieves
much better classification rates on DDS whereas
PaleoSketch and Cali show similar results on both datasets.
For lines, Cali and PaleoSketch perform better on the
BSDC. This is worthy of further investigation.

For the trainable recognizers (Rubine, 1$ and DTW) we
can compare results in two ways.

P. Schmieder, B. Plimmer and R. Blagojevic / Automatic Evaluation of Sketch Recognizers

©The Eurographics Association 2009.

1. From each set which has been trained and tested on
the same data; e.g. trained and tested on DDS (Table 4).

2. From each set which has been trained and tested on
different data; e.g. trained on DDS and tested on BSDS
(Table 4, Table 5).

While the first comparison does not show any obvious
patterns, the second one where the performance on the
datasets is compared with the different training sets shows
very clear differences for closed shapes (Tables 4 & 5).

In most cases (the exception being Rubine’s ellipse
which was negative, but below the threshold) the
recognizers performed considerably better when trained on
diagram data. For the 1$ recognizer the difference was a
stunning ~20%. Interestingly there was no difference in
lines, such as we observed for the untrained recognizers,
apparent with the trained recognizers. All values for lines
were below the threshold.

6. Related Work

We know of no other tool to automatically test sketch
recognition algorithms. There are tools for collecting and
labelling data, generating feature sets and integrating
multiple recognizers.

The closest match to this work is iGesture, a gesture
recognition framework [SNK07] for integrating multiple
recognizers. It works from the perspective of individual
components (that may consist of several strokes). The
framework provides interfacing to various recognizers,
evaluation of individual gestures and an API for application
programmers. The concept of standalone gestures is
central to its architecture: gesture definition is the first step
in describing a problem and the test bed is based on
evaluation of standalone examples.

There are tools to collect data and tools to label it
afterwards. SOUSA [PWJH08] is a tool which can be used
to collect data. It is an online based application which
allows researchers to create their collection studies defining
the collection criteria. Once a project is set up, participants
can use the tool to provide input in the form of sketches
done according to the predefined task descriptions. The
collected data can be accessed by everyone.

To label data a tool by Wolin et al. [WSA07] can be
used. The tool provides grouping as well as fragmenting
functions. Grouping is when multiple strokes are combined
to one component. Fragmentation is the opposite process
where a stroke is broken up into multiple components.

In DataManager [BPGW08 , BSP09] multiple labels can
be applied to the same stroke. A hierarchical labelling
approach is used which allows the inference of a
predefined structure of sketch components thus saving time
during the labelling process. This means that a label can be
defined as a child of another label, thus inferring the
affiliation of a component to multiple labels.

To our knowledge DataManager is the only tool which
can be used to do both, data collection and labelling.
DataManager also contains an automatic labelling
mechanism dividing sketch components into shapes and
writing [PPGI07]. Additionally, DataManager contains a
library of features which can be used to generate feature
sets from sketch datasets. The feature sets are not used in

this project, but can be used in data mining tools such as
Weka [WF02].

7. Discussion

In order to enable automatic evaluations of recognizers
we have extended our DataManager with an evaluation
platform. The integration is facilitated via a flexible
software interface and settings file. This allows for
recognizers written in different languages and data in
different formats to be treated fairly.

iGesture [SNK07] has a similar approach to interfacing
recognizers but a very limited evaluation interface. Their
approach is gesture based, in comparision to our approach
which is data driven. At the core of our architecture are
complete diagram examples. The example diagrams are
labelled and feed into the various algorithms for evaluation
within the context of the diagram. There are two reasons to
take this approach. First, we have found that inter-stroke
data is useful in some problem contexts [PPGI07] and this
is missing or unreliable when gestures are treated
individually. Second, our evaluator can be used to evaluate
algorithms that use rich contextual information.

As outlined in experiment 1, it is difficult to do a fair
comparison of recognizers as each has been designed for
different problems. We have noted with the basic shape
recognizers integrated into DataManager some of the
different constraints on input and different basic shape sets.
These differences exist in other categories of recognizers.
With basic shape recognizers it would not be fair to
compare the results of test involving single and multi-
stroke components as it is more difficult to recognize multi
stroke components than single stroke ones. Furthermore,
for both tests, single and multi-stroke, different data has to
be used since a component either consists of one or
multiple strokes. The same difficulty in judgement arises
when component by component is passed to the recognizer
in contrast to the whole sketch. A recognizer accepting an
entire sketch could take advantage of the spatial ordering of
the components but has to decompose the sketch in the first
place.

Despite these difficulties, comparing the performance of
different recognizers is a worthwhile activity. Recognizer
comparative studies, like all experiments, must control all
the variables except those of interest. With an automatic
framework this can be achieved. The experiments that we
have reported here took two datasets and explored the
efficacy of the integrated recognizers within a limited range
of basic shapes.

While these experiments are only indicative of the types
of experiments that can be run, and used here as a proof of
concept, they have produced some interesting results. It is
clear from experiment 2 that the context of drawing is
influential on the performance of algorithms. Most current
tools that use trainable recognizers, take standalone
examples for training. This is appropriate if we are
interested in recognizing standalone examples. However if
diagrams are the target, our results suggest that much
higher success rates are possible with these recognizers if
they are trained from example diagrams. One possible
explanation could be that shapes in the BSDS have been
sketched more tidily because users were focused on the
task of drawing a shape rather than on drawing a diagram

P. Schmieder, B. Plimmer and R. Blagojevic / Automatic Evaluation of Sketch Recognizers

©The Eurographics Association 2009.

contained of shapes. Therefore the feature measurements
are less realistic.

Many other experiments could be simply configured
with an automatic platform. For example numerous
enhancements to Rubine’s algorithm have been proposed
e.g. [PF07, SNK07]. It would be relatively simple to
implement each of these variations and compare their
efficacy. A similar study with various stroke splitting and
joining algorithms would also be possible.

Another reasonable aim of an evaluation can be to find
the most suitable recognizer for a problem. If there is a new
domain of sketches and the “best” integrated recognizer has
to be determined, then the winner depends on the definition
of best. If “best” means the recognizer with the highest
accuracy, then highest accuracy wins. However, if the
problem involves recognition of multi-stroke components
and the manipulation of the recognizer’s basic shape set,
then the most accurate recognizer might not be the most
suitable one.

Finding recognizers’ strengths and weaknesses and then
weighing every recognizer’s performance against the new
domain’s demands can help to create a new recognizer. By
analysing the parts of the tested recognizers, the pieces of
code responsible for the good performance can be
identified and extracted. Once all the “good” parts from the
recognizers are gathered, they can be combined to make a
better recognizer.

One limitation of the DataManager is that the degree to
which a recognizer can be adjusted to a test varies. As
shown in experiment one when using PaleoSketch [PH08]
it is possible to manipulate the basic shape set by switching
off the corresponding modules. The influence of this has
been shown in the experiment and the extent to which it
influences the accuracy. The same configuration is not
possible with Cali and Microsoft Ink Analyser. However,
such manipulation is possible for recognizers which have to
be trained by only training on the components which have
to be classified.

8. Conclusion

The recognition of sketches has been attempted by
various research groups over the past 15 years. Yet a
satisfactory recognizer in terms of accuracy and drawing
constraints has not been found. To evaluate an algorithm, it
is compared to others using the same data they used. Due to
the lack of standardised datasets a meaningful comparison
has not been possible. Furthermore, not all existing
recognizers are publicly available, which restricts
comparative evaluations in terms of significance. By
extending the sketch framework DataManager [BPGW08]
with an evaluation platform, we overcome the outlined
problems by providing a tool with which recognition
algorithms can be compared using the same datasets. The
experiments we have conducted with the platform validate
the recognizer integration strategies we have employed and
demonstrate the types of data that can be produced.

Additionally, the integration of new recognition
algorithms is supported and by doing so the tool will
provide a steadily growing pool of integrated algorithms
which can be used by others thus saving time and
increasing the significance of the comparative evaluation
studies.

The next step in the development of DataManager’s
evaluation platform will be to add various forms of training
strategies such as k-fold cross validation. Furthermore,
features to save test settings such as selected data for
training and testing will be integrated.

9. Acknowledgements

Thanks to the people who provided their recognizers for
this research. This research is partly funded by Microsoft
Research Asia and Royal Society of New Zealand,
Marsden Fund.

References

[BPGW08] BLAGOJEVIC R., PLIMMER B., GRUNDY J.,
WANG Y.: A Data Collection Tool for Sketched
Diagrams, 5th Eurographics Conference on Sketch
Based Interfaces and Modelling (SBIM ’08), Annecy,
France.

[BSP09] BLAGOJEVIC R., SCHMIEDER P., Plimmer B.:
Towards a Toolkit for the Development and
Evaluation of Sketch Recognition Techniques.
Intelligent User Interfaces (IUI ’09), Florida, USA.

[FPJ02] FONSECA M. J., PIMENTEL C. E., JORGE J. A.:

CALI: An Online Scribble Recogniser for
Calligraphic Interfaces. AAAI Spring Symposium on
Sketch Understanding.

[PPGI07] PATEL R., PLIMMER B., GRUNDY J., IHAKA R.:
Ink Features for Diagram Recognition. 4th
Eurographics Workshop on Sketch-Based Interfaces
and Modeling Riverside, California: 131-138.

[PH08] PAULSON, B., HAMMOND T.: PaleoSketch: accurate
primitive sketch recognition and beautification,
Proceedings of the 13th international conference on
Intelligent user interfaces. ACM, Gran Canaria,
Spain.

[PWJH08] PAULSON B., WOLIN A., JOHNSTON J.,
HAMMOND T.: SOUSA: Sketch-based Online User
Study Applet. Sketch Based Interfaces and Modeling,
Annecy, France: 81-88.

[PF07] PLIMMER B., FREEMAN I.: A Toolkit Approach to
Sketched Diagram Recognition. HCI, Lancaster, UK,
1: 205-213.

[Rub91] RUBINE D. H.: Specifying gestures by example.
Proceedings of Siggraph '91: 329-337.

[SNK07] SIGNER B., NORRIE M. C., KURMANN U.:
iGesture: A Java Framework for the Development
and Deployment of Stroke-Based Online Gesture
Recognition Algorithms.

[WF02] WITTEN I. H., FRANK E.: Data mining: practical
machine learning tools and techniques with Java
implementations. ACM SIGMOD Record 31: 76-77.

[WWL07] WOBBROCK J. O., WILSON A. D., LI Y.: Gestures
without libraries, toolkits or training: a $1 recognizer
for user interface prototypes, Proceedings of the 20th
annual ACM symposium on User interface software
and technology. ACM, Newport, Rhode Island, USA.

[WSA07] WOLIN A., SMITH D., ALVARADO C.: A Pen-
based Tool for Efficient Labelling of 2D Sketches.
4th Eurographics Workshop on Sketch-Based
Interfaces and Modeling, Riverside, CA.

