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ABSTRACT 
We present our toolkit to automatically evaluate recognition algorithms. There are few published comparative 
evaluations of sketch recognition algorithms and those that exist do not provide benchmarking or direct 
comparisons because standardised data and an evaluation platform is not available. By unifying data collection, 
labelling and evaluation in one tool, fair, flexible and comprehensive evaluations are possible. Currently we have 6 
existing recognizers integrated into this tool. With our initial evaluations of these recognizers we have observed 
that the context from which training data is taken has an effect on recognition success rates. These results suggest 
that an evaluation platform such as this is a powerful adjunct for sketch recognition research. 
Categories and Subject Descriptors (according to ACM CCS): I.7.5 [Document Capture]: Graphics recognition and 
interpretation 

 

1. Introduction 

Fair and comparative evaluations of sketch recognizers 
have been difficult and circumstantial because of the lack 
of a general evaluation framework. There are tools to 
collect and label data [WSA07, PWJH08] and others to 
interface to multiple recognizers [SNK07]. However, to our 
knowledge, no tool provides an interface to plug in 
recognition algorithms and generate performance 
information using labelled data.  

A number of recognition techniques for hand-drawn 
sketches have been proposed. The efficacy is difficult to 
judge because there is no comparative benchmarking 
between techniques and algorithms. In part this is because 
the recognizers have been developed for different 
problems. Nevertheless, it is difficult to compare 
recognizers without consistently labelled training (for those 
that require training) and test data and an automatic test 
platform. 

We extend our sketch framework DataManager 
[BPGW08, BSP09], with a flexible evaluation platform 
into which recognition algorithms can be plugged-in and 
automatically tested. By adding a module to evaluate 
recognition algorithms, we create a toolkit which brings 
sketched data collections and recognition algorithms 
together. The extensions are primarily the development of 
an evaluation interface to accommodate and test 
recognition algorithms. We have also integrated a multi-
stroke labelling mechanism to accommodate a wider range 
of recognizers. 

2. Overview 

A framework uniting data collection, labelling, an 
interface to recognizers and a method to capture 
recognition results can form the foundation for comparative 
evaluations of recognizers. It enables an efficient 

evaluation of algorithms and the determination of the best 
available algorithm for new sketch domains. To evaluate 
new algorithms, the platform can be employed by simply 
integrating the new algorithm and testing it on data other 
recognizers have been tested on. Additionally, by providing 
the means to collect new data and label it, new domains can 
be tested on the implemented algorithms to determine the 
most appropriate one. Furthermore, previously unknown 
effects, such as the effect of different training datasets 
reported later in this paper, can be observed. 

To automate the evaluation of recognition algorithms a 
flexible framework is needed. An impartial evaluation is 
difficult when the participating elements differ in their 
scope of operation as well as in the underlying input and 
output constraints. A flexible platform which maximizes 
the manipulation of evaluation parameters does not 
completely solve the problem of impartial evaluations but 
gets closer to the solution. Up to now, when recognizers 
have been compared, one of two approaches has been 
taken: either accept the inconsistencies as a source of error 
or adjust the algorithms to accept similar input and produce 
similar output. 

Moreover, the framework acts as a repository for a 
feature library, recognition algorithms and ink datasets. 
Currently, in many publications promoting a new 
algorithm, the evaluation is constrained to tests involving 
data which is only used for the immediate assessment. This 
leads to a limitation of its significance. The acquisition of 
labelled data and of existing algorithms to lessen these 
limitations is problematic. Collecting and labelling data is 
time consuming. In the majority of cases the published 
description of an algorithm is not detailed enough to 
guarantee an exact copy; this renders any comparison 
meaningless. In this project some existing recognizers have 
been created from the published descriptions, others have 
been obtained by personal request to the authors.  
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Figure 1: The evaluation platform’s architecture

In the next section we present details of the evaluation 
platform implementation. We then report on two 
experiments we have used to evaluate the platform: for the 
first we integrated 6 basic shape recognizers and tested 
their performance over a limited set of basic shapes. The 
results suggested that the context of the drawings was 
affecting performance. The second experiment further 
explored this phenomenon. Finally we place this project in 
context with a review of related work and further 
discussion. 

3. Implementation  

The new evaluation platform is implemented into 
DataManager [BPGW08]. A number of extensions were 
needed to realize this platform; recognizer integration, 
training, testing, results generation and flexible labelling. 
The architecture of the new evaluation platform is shown in 
Figure 1.  

The communication between the evaluation platform and 
the recognizers is handled by manager classes, each 
dedicated to one recognizer. The evaluation platform uses 
reflection to interact with the manager class that 
implements the necessary training and test methods to run 
the recognizer. 
3.1 Recognizer Integration 

As there is no standard programming language defined 
for recognition algorithms, DataManager (written in C#) 
has to be able to work with all possible languages; e.g. 
Microsoft C#, Java and C++.  

To exchange information between the manager classes 
and the recognizers, data serialization is used. Data sent 
from the manager classes includes the component’s strokes 
broken down into the point coordinates plus time stamps 
and the test settings. The serialization technique is also 
used for the manager classes to receive the recognition 
results from the recognizers.  

To present data to different recognizer in appropriate 
formats it is then de-serialized and converted into 
appropriately formatted stroke objects. To run the 
recognition and serialize the results a script in the 
recognizer’s programming language (Note: Only for non 
C# recognizers) has to be written by the user. This script 
can be called by the manager class once the necessary 
information has been serialized. To aid serialisation and de-
serialisation in Java and C++ methods are provided as 
separate classes in the DataManager package. 

Every recognizer must have a unique name so that it can 
be instantiated. The recognizer’s name is stored in a 
settings file which is maintained by the user. Once a class 
is instantiated the methods to train and test the recognizer 
can be invoked.  
3.2 Training 

The effect of training a recognizer is to induce 
knowledge about the components it has to recognize. This 
is done by providing it with examples of the actual 
components. Depending on the algorithm’s architecture, a 
recognizer may need to be trained. Ink data has to be 
provided to the recognition algorithm for this purpose. 
There are different learning techniques ranging from the 
creation of component snapshots [WWL07] to the 
generation of specially formatted files containing the 
serialized ink data [PF07]. As there are many different 
ways to train a recognizer the training method in the 
recognizer’s manager class must be individually coded.  

To select the data which is used to train the recognizer, 
DataManager iterates through all the sketches which have 
been selected for training. For each sketch, the components 
are checked individually as to whether they satisfy the 
evaluation options; e.g. single and/or multi-stroke 
components. The user specifies which participants to draw 
the training data from and the maximum number of training 
examples. In the case where there are more examples per 
component class available than allowed, a subset of the 
shapes has to be chosen by DataManager. Two different   
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Figure 2: The general interface of DataManager’s evaluation platform

methods have been implemented; random and sequential. 
Random selection can be useful when the influence of the 
selection of components within a sketch has to be 
examined or if the selection does not matter at all. 
However, the random method excludes the chance of 
repeating the exact same evaluation at a later point in time 
because there is no way to reselect exactly the same set of 
randomly chosen training examples. Sequential selection 
overcomes this problem by taking an equal number of 
shapes from every selected participant. With this approach 
diversity over the possible different drawing styles from 
different participants is guaranteed.  

Components that pass the filter which eliminates 
prohibited components (components which have been 
excluded by the evaluation settings), trigger the 
recognizer’s training method and are handed over to the 
recognizer together with training settings. The criteria a 
component has to satisfy for training are generally identical 
with those for testing. However if different criteria are 
required or training data in the corresponding format 
already exists, the location of this data can be specified in 
the settings file.  
3.3 Testing 

To test a recognizer, ink data and the test settings are 
input to the manager class’s test method. The main task of 
the test method is to initialize and configure (according to 
the test settings) the recognizer, trigger the recognition and 
receive and store the results. Additionally, depending on 
the recognizer’s implementation language, the manager 
may need to invoke the script which controls the recognizer 
in its language (see 3.1 Recognizer Integration). 

The decision whether to pass the recognizer a complete 
sketch or the sketch’s components one after another is 
based on the test settings. In contrast to the decision 
whether single and/or multi-stroke components are to be 
tested, this choice is mutually exclusive. If a complete 

sketch is passed to the recognizer it has to compute 
multiple recognition results and pass them back to 
DataManager. This is not necessary if one component at a 
time is processed.  

To select the data which is used to test the recognizer, 
DataManager iterates through all the sketches which have 
been selected for testing, filtering and formatting the data 
using the same methods as are used for training data, and 
forwarding it to the recognizer. Once the recognition is 
finished, the results that consist of the recognizer’s 
suggestions, the correct classification, duration and 
confidence values are stored. 
3.4 Output 

Once all recognizers are tested the results are prepared 
for output. Output can be generated in two different 
formats; screenshots of the wrongly recognized sketches 
and a Microsoft Excel file containing values and statistics 
from the evaluation. 

A screenshot of a sketch is generated if any component 
has been incorrectly classified. To make the screenshot 
more readable each stroke is coloured depending on its 
recognition result. If a stroke has not been considered 
(because of test settings) it is coloured black. A correctly 
classified stroke is blue. Incorrectly classified strokes are 
coloured red and a number is assigned to every wrongly 
recognized component. A legend of these numbers below 
the screenshot gives the correct result and the algorithm’s 
proposed result (see Figure 1 (A)).  

The generated Microsoft Excel file contains information 
regarding several different test aspects. The information is 
grouped into 4 categories presented on four Excel 
worksheets; evaluation settings, general recognizer results, 
component results and participant analysis.  

The first category, evaluation settings, provides 
information about the evaluation study so that the test can 
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be rerun under the same conditions. On the second 
worksheet, details about every recognizer’s performance at 
different levels of granularity are given. At the most 
general level, overall performance information is given for 
all recognizers with the number of correctly and incorrectly 
classified components (Figure 1 (B)). To provide a more 
detailed analysis of the results a confusion matrix shows 
every recognizer’s suggested classifications versus the 
correct result (see Figure 4 (B)). Statistics presented on the 
third and fourth worksheet give more detailed information 
on shape and participants respectively.  

During the recognition process any program exceptions 
which are caused by the integrated recognizers are logged. 
The error.log file contains the information identifying the 
ink data causing the exception.  
3.5 XML Settings File  

The names of the integrated recognizers are provided to 
DataManager by including them in the XML settings file 
along with other recognizer specific settings. These settings 
are separated into two groups; options and mappings. An 
option specifies a setting related to either DataManager or 
the recognizer; for example whether the recognizer can 
accept multi-stroked shapes. 

A mapping can be used to manipulate the recognition 
result statistics. With a mapping the name of the 
recognition result can be associated with the name of a test 
component. For example the component shown in Figure 3 
may have been labelled in the test data as an “arrowhead” 
while Cali [FPJ02] calls it “move”. To reflect this fact in 
the generated statistics, the mapping function is used. 

 
Figure 3: A basic shape called “move” by Cali and 

“arrow head” by DataManager  

3.6 GUI 
From the evaluator GUI interface all elements necessary 

to set up and control an evaluation study of the recognizers 
can be set. Due to space constraints, only the most 
frequently used elements are always shown; the recognition 
algorithm list (Figure 2(A)), the button to load a setting file 
(Figure 2 (D)) and the button to start the recognition 
(Figure 2 (E)). The remaining elements are arranged on 
tabs. One set of tabs is for recognizer specific options 
(Figure 2 (B)) and the other one for test specific options 
(Figure 2(C)).  

As every recognizer takes different forms of input, 
options to control these differences are provided. Via the 
options, those recognizers that can handle multi-stroke data 
can be tested on just single stroke examples. Also, some 
recognizers are restricted to one component per recognition 
step; others take complete sketches as input. These options 
are recognizer specific rather than test specific. By defining 
them as recognizer specific, it is possible to configure 

flexible tests such as the performance of recognizers 
restricted to single stroked components with those which 
can process multi-stroke components.  

The lower tab set controls the data provided to the test 
for training and testing. Depending on the different aspects 
such as the number of training examples, the recognizer’s 
performance may vary. The recognizer training options are: 
the selection of training data, the maximum number of 
training examples per component and the method the 
training examples are chosen.  

The training data is selected by checking the participants 
and their sketches. It is not possible to isolate certain parts 
of the sketch; when a sketch is selected all its labelled 
components (dependent on the filter) become possible 
training examples. However it is possible to set a 
maximum number of training examples per component. 
This restriction is applied to every class of components but 
does not guarantee that enough examples of a component 
are available. To provide an overview of the component 
numbers included in the selected sketches, a table 
containing all the different types of labelled components is 
shown. The number of single stroke components is listed 
separately from the number of multi-stroke components 
(Figure 2 (C)). 

The test tab is similar in structure and content to the 
training tab. While it is usual to use different data for 
training and testing this is not enforced, but a warning 
message is generated if the same data is selected.  

The next tab guides the filtering of basic components and 
is controlled by a check-list generated from the loaded 
dataset showing all the different labels which have been 
used to tag sketch components in the dataset. Component 
types to participate in an evaluation study are selected, the 
other classes are deselected. This filter applies for training 
as well as for testing.  
3.7 Labelling 

Besides the recognizer integration and test platform the 
DataManager labelling has been extended as some 
recognizers evaluate components consisting of more than 
one stroke (multi-stroke). The existing single-stroke 
labelling system has been supplemented with the new one 
which allows the grouping of multiple strokes to one 
component. Thus the same stroke can be part of different 
components; for example a rectangle could be labelled as 
rectangle, quadrilateral and square. Multi-stroke labels can 
be added, removed and manipulated at any time. 

4. Experiment 1 

As a proof of concept of the evaluation framework we 
have integrated and evaluated 6 basic shape recognition 
algorithms; Cali [FPJ02], Microsoft Ink Analyser, 1$ 
recognizer [WWL07], Rubine’s [Rub91]  with the extended 
feature set used in InkKit [PF07], PaleoSketch [PH08] and 
a recognizer using dynamic time warping techniques 
(DTW) [WWL07]. 
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Figure 4: (A) Evaluation summary results for line, rectangle and circle tests using 6 different basic shape recognizers. The 

duration is given in milliseconds.(B) Confusion matrix showing Cali’s detailed classification results. (C) An ER diagram from 
DDS which’s shapes can be used for trainingand testing. (D)All shape classes contained in both datasets; BSDS and DDS.
This set of recognizers varies in implementation 

language (Java, C# and C++), recognition algorithms and 
techniques. For the Java recognizer (PaleoSketch) we 
interfaced to the jar file. C++ and C# recognizers have been 
referenced as libraries (i.e. Cali and the Microsoft Ink 
Analyser). The source code of the three remaining 
recognizers implemented in C# is directly integrated. Out 
of the six integrated recognizers, three have to be trained; 
Rubine, DTW and 1$. PaleoSketch has been provided to us 
on personal request, Cali has been downloaded from 
http://vimmi.inesc-id.pt/cali/code.html and DTW and 1$ 
from http://depts.washington.edu/aimgroup/proj/dollar/,  
for Rubine’s we have used our group’s InkKit 
implementation.  
4.1 Basic Shapes 

All of these recognizers seek to identify basic shapes 
found in diagrams. There is no definitive set of basic 
shapes. The most common are: line/curve/arc, 
rectangle/square/diamond, circle/ellipse, arrow head and 
triangle (Figure 4 (C,D)). 

The larger the set the more difficult it is to accurately 
recognize basic shapes due to the increased number of 
possible candidate classes and similarities between classes. 
If a set only consists of two different shape classes there is 
a 50% chance that the correct result is computed by pure 
chance. The likelyhood of misclassifications increase even 
more in case of different shape classes that are similar such 
as ellipses and circles. 

Another difficulty when recognizing basic shapes is a 
shape’s composition. A basic shape can be sketched with 
an arbitrary number of strokes (multi-stroke) and 
furthermore, one stroke can represent an arbitrary number 
of shapes (complex shapes). However, complex shapes, as 
the name indicates, are not considered basic shapes. 
4.2 Dataset 

 To conduct the experiment a data set of basic shapes has 
been used. The set contains six different drawings from 33 
participants with examples of the basic shapes: circle, 
rectangle, diamond, arrow, triangle and ellipse. Each 

person drew 9 or 10 examples of each shape; no instruction 
was given to them on drawing style. We refer to this 
dataset as the Basic Shape Data Set (BSDS). For this 
experiment only single stroke lines, rectangles and circles 
have been used (see Table 1). 

Table 1: Overview of the basic shapes used for both 
experiments taken from the basic shape dataset (BSDS) 

 Single 
stroke 

Multi 
stroke 

Total 

Circle 304 1 305 

Rectangle 156 143 299 

Line 324 1 325 

Total 784 145 929 

 
4.3 Experiment Settings 

For the evaluation all recognizers have been tested on 
lines, rectangles and circles. Additionally, the basic shapes 
have been input one at a time, not as complete diagram 
sketches. Rubine’s [Rub91], 1$ and DTW [WWL07] have 
been trained with 15 examples per shape class using two 
participants’ sketches. The remainder of the data was used 
for testing. To run the experiment, a Dell Optiplex 775 
running Windows Vista with an Intel Core Duo CPU with 
two 3.00 GHz cores and 4 GB Ram was used. The 
evaluation took 17 minutes and involved the test of 285 
circles, 140 rectangles and 305 lines taken from table 1 
column 2 (with the other data used for training). The results 
are generated as a Microsoft Office Excel file and colour 
coded images of the misclassified basic shapes.  

The raw results can be seen in Figure 4 (A). Rubine’s 
achieved the highest recognition rate closely followed by 
1$, PaleoSketch, DTW and Cali. The Microsoft Ink 
Analyser performed considerably worse.  
With these results we can demonstrate the difficulty of 
comparing recognizers. It is not always possible to 
manipulate a recognizer’s basic shape set which makes a 
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fair comparison a difficult undertaking. Cali’s basic shape 
set cannot be manipulated, in 94 cases circles have been 
classified as ellipses. In 23 of these 94 misclassifications 
the correct result has been returned as the second most 
likely result (Figure 4 (B), last column). In contrast, 
PaleoSketch has an option to switch off the modules 
responsible for a shape class. Figure 4 (A) shows the 
results for PaleoSketch when only the circle, rectangle and 
line modules are activated. However, in the case when all 
14 modules are activated, PaleoSketch recognizes 638 
shapes correctly, 44 less than before. Note that these 
numbers are not representative for any of the recognizers’ 
real performances as we just use them to outline the power 
of DataManager and the difficulties of a fair evaluation. 
Other tests we have run with different combinations of 
shape sets have given quite different rankings. The 
evaluation also reports on the average classification time 
per shape in milliseconds given that the recognizer is 
already trained and configured. Large differences between 
the recognizers can be seen (Figure 4 (B) row 7).  

The analysis from a shape’s perspective shows that 
almost one third of all rectangles have been misclassified 
while 82% of the circles and lines have been correctly 
classified (Table 2). 

Table 2: Shape matrix for all recognizers 

 Circle Line Rectangle 
Correct 1387 1502 561 
Incorrect 323 328 279 
% Correct 81.11% 82.08% 66.79% 

5. Experiment 2  

We also tried the same experiment on a diagram dataset 
(DDS) of Entity Relationship (ER) diagrams and Process 
diagrams drawn by the same participants and collected at 
the same time as the BSDS dataset used in experiment 1. 
This dataset consists of 33 ER and Process diagrams drawn 
by each participant from a text description of the 
requirements. We noticed quite different results for the 
non-trainable recognizers (Cali, PaleoSketch, Microsoft Ink 
Analyser).  

We hypothesised that there may be some difference 
between participants’ drawing style when drawing 
individual component examples to when they draw them as 
a part of a diagram.  

To investigate our observations, we ran four more 
evaluations. For the first two tests trainable recognizers 
(Rubine, 1$ and DTW) have been trained on the basic 
shapes from participants 1 to 7 from the BSDS and all 
recognizers tested on participants’ 8 to 33 data from both 
datasets. For the third and fourth test, the trainable 
recognizers have been trained again on participants 1 to 7’s 
data from the DDS dataset and tested on participants’ 8 to 
33 data from both datasets. We modified the basic shape 
set from the first experiment replacing circles with ellipses 
as we had more examples of ellipses in the DDS.  

When comparing the success percentages there are some 
clear break points in the difference in results. The 
recognition rates are either <2.5% different or greater than 
5%. Our data collection process was not ‘balanced’ (we 
had not planned to do this experiment) so rather than using 
complex statistics we simply considered values less than 

2.5 as worthy of further investigation. Tables 3- 5 show the 
summary results from this experiment.  

Table 3: Results for non trainable recognizers 

Cali MS PaleoSketch 
Test Diagrams (% Correct) 

Rectangle 91.30 65.22 93.48 
Line 84.07 0.00 88.50 
Ellipse 94.06 81.74 98.17 

Test Basic Shapes (% Correct) 
Rectangle 90.43 22.61 78.26 
Line 97.58 0.00 97.58 
Ellipse 95.26 75.86 99.57 

Differences 
Rectangle 0.87 42.61 15.22 
Line -13.51 0.00 -9.09 
Ellipse -1.19 5.87 -1.40

Table 4: Results for trainable recognizers tested on 
diagram dataset  

 Rubine 1$ DTW 
Train Diagrams (% Correct) 

Rectangle 82.61 91.30 82.61 
Line 100.00 100.00 100.00 
Ellipse 97.26 98.63 96.80 

Train Basic Shapes (% Correct) 
Rectangle 67.39 71.74 80.43 
Line 100.00 97.94 100.00 
Ellipse 99.54 73.52 80.37 

Differences 
Rectangle 15.22 19.57 2.17 
Line 0.00 2.06 0.00 
Ellipse -2.28 25.11 16.44 

Table 5: Results for trainable recognizers tested on 
basic shape dataset 

 Rubine 1$ DTW 
Train Diagrams (% Correct) 

Rectangle 92.17 87.83 76.52 
Line 100.00 100.00 100.00 
Ellipse 98.28 98.71 98.71

Train Basic Shapes (% Correct) 
Rectangle 77.39 65.22 71.30 
Line 100 99.19 100.00 
Ellipse 99.57 85.78 90.95 

Differences 
Rectangle 14.78 22.61 5.22 
Line 0.00 0.81 0.00
Ellipse -1.29 12.93 7.76 
 
Five of the nine results (differences) for the untrained 

recognizers (Table 3) are greater than 5%. For rectangles, 
Microsoft and PaleoSketch perform much better on DDS, 
while Cali is equally good. For ellipses, Microsoft achieves 
much better classification rates on DDS whereas 
PaleoSketch and Cali show similar results on both datasets. 
For lines, Cali and PaleoSketch perform better on the 
BSDC. This is worthy of further investigation. 

For the trainable recognizers (Rubine, 1$ and DTW) we 
can compare results in two ways.  
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1. From each set which has been trained and tested on 
the same data; e.g. trained and tested on DDS (Table 4). 

2. From each set which has been trained and tested on 
different data; e.g. trained on DDS and tested on BSDS 
(Table 4, Table 5).  

While the first comparison does not show any obvious 
patterns, the second one where the performance on the 
datasets is compared with the different training sets shows 
very clear differences for closed shapes (Tables 4 & 5).  

In most cases (the exception being Rubine’s ellipse 
which was negative, but below the threshold) the 
recognizers performed considerably better when trained on 
diagram data. For the 1$ recognizer the difference was a 
stunning ~20%. Interestingly there was no difference in 
lines, such as we observed for the untrained recognizers, 
apparent with the trained recognizers. All values for lines 
were below the threshold.    

6. Related Work  

We know of no other tool to automatically test sketch 
recognition algorithms. There are tools for collecting and 
labelling data, generating feature sets and integrating 
multiple recognizers.  

The closest match to this work is iGesture, a gesture 
recognition framework [SNK07] for integrating multiple 
recognizers. It works from the perspective of individual 
components (that may consist of several strokes). The 
framework provides interfacing to various recognizers, 
evaluation of individual gestures and an API for application 
programmers. The concept of  standalone gestures is 
central to its architecture: gesture definition is the first step 
in describing a problem and the test bed is based on 
evaluation of standalone examples.  

There are tools to collect data and tools to label it 
afterwards. SOUSA [PWJH08] is a tool which can be used 
to collect data. It is an online based application which 
allows researchers to create their collection studies defining 
the collection criteria. Once a project is set up, participants 
can use the tool to provide input in the form of sketches 
done according to the predefined task descriptions. The 
collected data can be accessed by everyone.  

To label data a tool by Wolin et al. [WSA07] can be 
used. The tool provides grouping as well as fragmenting 
functions. Grouping is when multiple strokes are combined 
to one component. Fragmentation is the opposite process 
where a stroke is broken up into multiple components.  

In DataManager [BPGW08 , BSP09]  multiple labels can 
be applied to the same stroke. A hierarchical labelling 
approach is used which allows the inference of a 
predefined structure of sketch components thus saving time 
during the labelling process. This means that a label can be 
defined as a child of another label, thus inferring the 
affiliation of a component to multiple labels.  

To our knowledge DataManager is the only tool which 
can be used to do both, data collection and labelling.   
DataManager also contains an automatic labelling 
mechanism dividing sketch components into shapes and 
writing [PPGI07].  Additionally, DataManager contains a 
library of features which can be used to generate feature 
sets from sketch datasets. The feature sets are not used in 

this project, but can be used in data mining tools such as 
Weka [WF02]. 

7. Discussion 

In order to enable automatic evaluations of recognizers 
we have extended our DataManager with an evaluation 
platform. The integration is facilitated via a flexible 
software interface and settings file. This allows for 
recognizers written in different languages and data in 
different formats to be treated fairly.  

iGesture [SNK07] has a similar approach to interfacing 
recognizers but a very limited evaluation interface. Their 
approach is gesture based, in comparision to our approach 
which is data driven. At the core of our architecture are 
complete diagram examples. The example diagrams are 
labelled and feed into the various algorithms for evaluation 
within the context of the diagram. There are two reasons to 
take this approach. First, we have found that inter-stroke 
data is useful in some problem contexts [PPGI07] and this 
is missing or unreliable when gestures are treated 
individually. Second, our evaluator can be used to evaluate 
algorithms that use rich contextual information.  

As outlined in experiment 1, it is difficult to do a fair 
comparison of recognizers as each has been designed for 
different problems. We have noted with the basic shape 
recognizers integrated into DataManager some of the 
different constraints on input and different basic shape sets. 
These differences exist in other categories of recognizers. 
With basic shape recognizers it would not be fair to 
compare the results of test involving single and multi-
stroke components as it is more difficult to recognize multi 
stroke components than single stroke ones. Furthermore, 
for both tests, single and multi-stroke, different data has to 
be used since a component either consists of one or 
multiple strokes. The same difficulty in judgement arises 
when component by component is passed to the recognizer 
in contrast to the whole sketch. A recognizer accepting an 
entire sketch could take advantage of the spatial ordering of 
the components but has to decompose the sketch in the first 
place. 

Despite these difficulties, comparing the performance of 
different recognizers is a worthwhile activity. Recognizer 
comparative studies, like all experiments, must control all 
the variables except those of interest. With an automatic 
framework this can be achieved. The experiments that we 
have reported here took two datasets and explored the 
efficacy of the integrated recognizers within a limited range 
of basic shapes.  

While these experiments are only indicative of the types 
of experiments that can be run, and used here as a proof of 
concept, they have produced some interesting results. It is 
clear from experiment 2 that the context of drawing is 
influential on the performance of algorithms. Most current 
tools that use trainable recognizers, take standalone 
examples for training. This is appropriate if we are 
interested in recognizing standalone examples. However if 
diagrams are the target, our results suggest that much 
higher success rates are possible with these recognizers if 
they are trained from example diagrams. One possible 
explanation could be that shapes in the BSDS have been 
sketched more tidily because users were focused on the 
task of drawing a shape rather than on drawing a diagram 
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contained of shapes. Therefore the feature measurements 
are less realistic. 

Many other experiments could be simply configured 
with an automatic platform. For example numerous 
enhancements to Rubine’s algorithm have been proposed 
e.g. [PF07, SNK07]. It would be relatively simple to 
implement each of these variations and compare their 
efficacy. A similar study with various stroke splitting and 
joining algorithms would also be possible.  

Another reasonable aim of an evaluation can be to find 
the most suitable recognizer for a problem. If there is a new 
domain of sketches and the “best” integrated recognizer has 
to be determined, then the winner depends on the definition 
of best. If “best” means the recognizer with the highest 
accuracy, then highest accuracy wins. However, if the 
problem involves recognition of multi-stroke components 
and the manipulation of the recognizer’s basic shape set, 
then the most accurate recognizer might not be the most 
suitable one.  

Finding recognizers’ strengths and weaknesses and then 
weighing every recognizer’s performance against the new 
domain’s demands can help to create a new recognizer. By 
analysing the parts of the tested recognizers, the pieces of 
code responsible for the good performance can be 
identified and extracted. Once all the “good” parts from the 
recognizers are gathered, they can be combined to make a 
better recognizer.  

One limitation of the DataManager is that the degree to 
which a recognizer can be adjusted to a test varies. As 
shown in experiment one when using PaleoSketch [PH08] 
it is possible to manipulate the basic shape set by switching 
off the corresponding modules. The influence of this has 
been shown in the experiment and the extent to which it 
influences the accuracy. The same configuration is not 
possible with Cali and Microsoft Ink Analyser. However, 
such manipulation is possible for recognizers which have to 
be trained by only training on the components which have 
to be classified.  

8. Conclusion  

The recognition of sketches has been attempted by 
various research groups over the past 15 years. Yet a 
satisfactory recognizer in terms of accuracy and drawing 
constraints has not been found. To evaluate an algorithm, it 
is compared to others using the same data they used. Due to 
the lack of standardised datasets a meaningful comparison 
has not been possible. Furthermore, not all existing 
recognizers are publicly available, which restricts 
comparative evaluations in terms of significance. By 
extending the sketch framework DataManager [BPGW08] 
with an evaluation platform, we overcome the outlined 
problems by providing a tool with which recognition 
algorithms can be compared using the same datasets. The 
experiments we have conducted with the platform validate 
the recognizer integration strategies we have employed and 
demonstrate the types of data that can be produced.   

Additionally, the integration of new recognition 
algorithms is supported and by doing so the tool will 
provide a steadily growing pool of integrated algorithms 
which can be used by others thus saving time and 
increasing the significance of the comparative evaluation 
studies.  

The next step in the development of DataManager’s 
evaluation platform will be to add various forms of training 
strategies such as k-fold cross validation. Furthermore, 
features to save test settings such as selected data for 
training and testing will be integrated. 
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